SÉANCE DU LUNDI 18 MAI 2020

I. Activité sur le carnet de santé (en visio de 11h à 12h)	1
II. Utiliser sa calculatrice	1
III. Quand le sinistre parle	1
IV. Livraison Express	2
V. Sans calculatrice (faites des dessins!)	2
VI. Trains en retard	2

I. Activité sur le carnet de santé (en visio de 11h à 12h)

Téléchargez l'activité (lien), nous la ferons ensemble.

Correction: disponible sur le site (lien).

II. Utiliser sa calculatrice

La variable X suit la loi normale $\mathcal{N}(180;10,5^2)$. On arrondira les probabilités à 10^{-3} .

- 1. Déterminer les probabilités suivantes :
 - a) $p(170 \le X \le 200)$
- **b)** $p(X \le 150)$
- c) $p(X \ge 160)$ d) $p(X \ge 190)$

- **2.** Déterminer le réel a tel que p(X < a) = 0.875.
- **3.** Déterminer le réel *b* tel que $p(X \ge b) = \frac{3}{4}$.

Correction:

- 1. a) $p(170 \le X \le 200) \approx 0.801$
- **b)** $p(X \le 150) \approx 0.002$
- c) $p(X \ge 160) \approx 0.972$
- **d)** $p(X \ge 190) \approx 0.17$
- **2.** Avec la calculatrice, on trouve $a \approx 192,079$.
- 3. Avec la calculatrice, on trouve $b \approx 172,918$.

III. Quand le sinistre parle

Une assurance s'intéresse aux coûts des sinistres susceptibles de survenir en 2013. On note X la variable aléatoire qui à chaque sinistre associe son coût. L'étude des années précédentes montre que X suit la loi normale de moyenne 1130 et d'écart type 180.

Quelle est la probabilité qu'en 2013 un sinistre pris au hasard coûte entre 850 et 1700 euros ?

Correction: $X \sim \mathcal{N}(1130;180^2)$ donc d'après la calculatrice $p(850 \le X \le 1700) \approx 0,939$.

La probabilité qu'en 2013 un sinistre pris au hasard coûte entre 850 et 1700 euros est d'environ 0,939.

IV. <u>Livraison Express</u>

Dans une entreprise de vente par correspondance, une étude statistique a montré que 40 % des clients ont choisi l'option « Livraison Express ».

On prélève au hasard et de manière indépendante 600 bons de commande.

On note X la variable aléatoire qui associe le nombre de bons portant la mention « Livraison Express ».

- 1. Déterminer la loi probabilité de X. Quelle est son espérance mathématique ?
- 2. On admet que l'on peut approcher la loi de la variable aléatoire $\frac{X-240}{12}$ par la loi normale centrée réduite. On note Z une variable aléatoire suivant la loi normale centrée réduite.
- a) Montrer que p($225 \le X \le 270$)=p($-1,25 \le Z \le 2,5$).

Quelle est alors la probabilité, arrondie à 10^{-3} près, que le nombre de bons portant la mention « Livraison Express » soit compris entre 225 et 270 ?

b) Déterminer la probabilité, arrondie à 10^{-3} près, qu'au moins 276 bons portent la mention « Livraison Express ».

Correction: cliquer ici (site) ou ici (image)

V. Sans calculatrice (faites des dessins!)

Une variable aléatoire X suit une loi normale d'espérance 45. On sait que p(X>30)=0,7.

Déterminer, sans calculatrice, les probabilités suivantes : $p(X \ge 60)$ et $p(30 \le X \le 60)$.

de toute façon, vous n'avez pas l'écart-type ^ ^

Correction : vidéo (\approx 6 min) ou image

VI. Trains en retard

Une étude a permis de révéler que le retard d'un train, en minute, peut être modélisé par une variable aléatoire X qui suit une loi normale d'espérance 5.

10 % des trains ont plus de 15 minutes de retard. Déterminer l'écart-type σ à 10^{-2} près.

Correction: vidéo (≈ 6 min) ou image