T'S

SÉANCE DU VENDREDI 15 MAI 2020

I. R.O.C importante pour le prochain chapitre	1
II. Utiliser sa calculatrice	1
III. Une erreur souvent commise dans les exercices et corrigés	1

I. R.O.C importante pour le prochain chapitre

Hier, nous avons vu (page 5 du cours) le théorème suivant :

Soit T une variable aléatoire suivant la loi normale centrée réduite $\mathcal{N}(0;1)$. Pour tout $\alpha \in]0;1[$, il existe un unique réel $u_{\alpha}>0$ tel que $p(-u_{\alpha}\leqslant T\leqslant u_{\alpha})=1-\alpha$.

Nous n'avons pas fait la démonstration. C'est une R.O.C. intéressante à faire. Nous allons la faire en exercice guidé type Bac :

Soit T une variable aléatoire suivant la loi normale centrée réduite $\mathcal{N}(0;1)$. Soit $\alpha \in [0;1]$.

- 1. Démontrer que pour tout réel x strictement positif : $p(-x \le T \le x) = 2F(x)$ où F est la primitive de f qui s'annule en 0.
- **2.** Démontrer que : $0 < \frac{1-\alpha}{2} < \frac{1}{2}$.
- **3. a)** On admet que F est continue et strictement croissante sur $[0;+\infty[$. Démontrer qu'il existe un unique réel strictement positif, noté u_{α} , tel que : $F(u_{\alpha}) = \frac{1-\alpha}{2}$.
- **b)** En déduire qu'il existe un unique réel $u_{\alpha}>0$ tel que $p(-u_{\alpha} \le T \le u_{\alpha})=1-\alpha$.

<u>Correction</u>: dans le document qui contient tous les corrigés du cours (<u>cliquer ici</u>).

II. Utiliser sa calculatrice

Si ce n'est pas déjà fait, bien faire les exercices III.1 et III.2 du cours, qui vous apprennent à utiliser la calculatrice.

Correction : dans le document qui contient tous les corrigés du cours (cliquer ici).

III. Une erreur souvent commise dans les exercices et corrigés

Il s'agit du IV. Du cours (IV. Approcher du discret par du continu... Attention !). Bien faire l'exercice. Voici la correction :

Correction:

1. Cela n'est pas très judicieux d'approcher $p(X \le 45)$ par $p(Z \le 45)$ car X prend ses valeurs dans \mathbb{N} , donc calculer $p(X \le 45)$ signifie bien sûr $p(0 \le X \le 45)$: on devrait approcher $p(X \le 45)$ par $p(0 \le Z \le 45)$.

- **2.** Si *n* est grand, on approache X par Z avec $\mathbb{Z} \sim \mathcal{N}(np; \sqrt{np(1-p)^2})$.
- 3. Avec n=255 et p=0.02: n p=5.1 et $\sqrt{n p (1-p)} \approx 2.2356$.
- a) On peut utiliser directement la calculatrice (sur CASIO : menu STAT, puis DIST-BINM-Bcd) et trouver : $p(X \le 5) \approx 0.59825$.

On peut aussi revenir à la définition de la loi binomiale et écrire :

$$p(X \le 5) = \sum_{k=0}^{5} {255 \choose k} 0.02^{k} 0.98^{255-k}$$

$$= {255 \choose 0} 0.98^{255} + {255 \choose 1} 0.02 \times 0.98^{254} + {255 \choose 2} 0.02^{2} 0.98^{253} + {255 \choose 3} 0.02^{3} 0.98^{252} + {255 \choose 4} 0.02^{4} 0.98^{251} + {255 \choose 5} 0.02^{5} 0.98^{250}$$

$$\approx 0.59825.$$

b) Avec la calculatrice (sur CASIO: menu STAT, puis DIST-NORM-Ncd):

$$p(Z \le 5) \approx p(-10^{99} \le Z \le 5) \approx 0.48216 \text{ et } p(0 \le Z \le 5) \approx 0.47089.$$

c) Observation 1 : remplacer X par Z n'est déjà pas un bon choix... On obtient $\approx 0,471$ au lieu de $\approx 0,598$! Tout d'abord, n n'est peut-être pas assez grand pour le p choisi... Le théorème de Moivre-Laplace parle de limite lorsque n tend vers $+\infty$.

Mais on pourrait corriger tout cela avec ce qu'on appelle la « correction de continuité ».

Observation 2: l'écart entre $p(Z \le 5)$ et $p(0 \le Z \le 5)$ est d'environ 0,01127, soit 1,1 % environ...

Ce n'est pas négligeable!