$T^{\circ}S$

SÉANCE DU JEUDI 2 AVRIL 2020

I. Déterminer un vecteur normal à un plan	1
I.1 Méthode : SF7 p332	1
I.2 Méthodes en vidéo	1
I.3 Pratique : exercice 54 p346	2
II. Déterminer une équation cartésienne d'un plan	2
II.1 Méthode : SF8 p333	2
II.2 Pratique : exercice 57 p347	2
III. Déterminer l'intersection d'une droite et d'un plan	2
IV. Montrer que deux plans sont perpendiculaires	2
IV.1 Méthode	2
IV.2 Pratique : exercice 72 p348	2

I. <u>Déterminer un vecteur normal à un plan</u>

I.1 Méthode : SF7 p332

Faire l'exercice « Savoir-faire 7 » page 332. L'exercice est corrigé en détail.

I.2 Méthodes en vidéo

Puis regardez cette excellente vidéo (\approx 14 min) qui fait le point sur les méthodes pour trouver un vecteur

I.3 Pratique: exercice 54 p346

$$\begin{array}{cccc} \underline{A} \, \underbrace{(0;-1;1)} & B(2;1;2) & \underline{C} \, \underbrace{(0;-3;2)} \\ \underline{A} \, \underline{B} \, (2-0;1-(-1);2-1) & \textit{ie} & \overline{A} \, \underline{B} \, (2;2;1) \\ \overline{A} \, \underline{C} \, (0-0;-3-(-1);2-1) & \textit{ie} & \overline{A} \, \underline{C} \, (0;-2;1) \, . \end{array}$$

PROPRIÉTÉ. Dans <u>un repère **orthonormé** de l'espace</u>, si \vec{u} (x;y;z) et \vec{v} (x';y';z') : $\vec{u} \cdot \vec{v} = xx' + yy' + zz'$

On cherche un vecteur $\vec{n}(a;b;c)$ normal au plan (ABC):

 $\vec{n} \cdot \overrightarrow{AB} = 0$ et $\vec{n} \cdot \overrightarrow{AC} = 0$ donc, puisqu'on est dans un repère orthonormé, 2a + 2b + c = 0 et -2b + c = 0.

$$\begin{cases} 2a + 2b + c &= 0 \\ -2b + c &= 0 \end{cases} \text{ donc } \begin{cases} 2a + 2b + 2b &= 0 \\ c &= 2b \end{cases} \text{ donc } \begin{cases} a &= -2b \\ c &= 2b \end{cases}$$

On choisit alors une valeur de b, par exemple b=1:(-2;1;2) est un vecteur normal au plan (ABC).

II. Déterminer une équation cartésienne d'un plan

II.1 Méthode : SF8 p333

Faire l'exercice « Savoir-faire 8 » page 333. L'exercice est corrigé en détail.

II.2 Pratique: exercice 57 p347

a) $\vec{n}(3;1;-2)$ est un vecteur normal du plan \mathcal{P} donc une équation cartésienne de \mathcal{P} est 3x+y-2z+d=0.

Or, A (3;1;2) appartient à ce plan, donc $3x_A + y_A - 2z_A + d = 0$ ie 9 + 1 - 4 + d = 0 ie d = -6.

Une équation cartésienne du plan $\overline{\mathcal{P}}$ est donc 3x+y-2z-6=0.

- **b)** B(4;-5;-2) et $3x_B + y_B 2z_B 6 = ... = 12 5 + 4 6 = 5$ donc $B \notin \mathcal{P}$.
 - C(0;4;1) et $3x_C + y_C 2z_C 6 = ... = 0 + 4 2 6 = -4$ donc $C \notin \mathcal{P}$.
 - D(2;2;1) et $3x_D + y_D 2z_D 6 = \dots = 6 + 2 2 6 = 0$ donc $D \in \mathcal{P}$.

III. Déterminer l'intersection d'une droite et d'un plan

Faire l'exercice « Savoir-faire 9 » page 333.

L'exercice est corrigé en détail.

IV. Montrer que deux plans sont perpendiculaires

IV.1 Méthode

Faire l'exercice « Savoir-faire 11 » page 335.

L'exercice est corrigé en détail.

IV.2 Pratique : exercice 72 p348

- a) D'après les équations cartésiennes :
 - un vecteur normal de \mathcal{P} est $\vec{n}_1(3;1;2)$
 - un vecteur normal de \mathcal{P} ' est $\overrightarrow{n_2}(1;5;-4)$.

Or (on est dans un repère orthonormé): $\vec{n_1} \cdot \vec{n_2} = 3 \times 1 + 1 \times 5 + 2 \times (-4) = 0$.

Donc $\vec{n_1}$ et $\vec{n_2}$ sont orthogonaux. Par conséquent, \mathcal{G} et \mathcal{P} ' sont perpendiculaires.

b) Le plan \mathscr{Q} a pour vecteur normal $\vec{n_3}(1;-1;-1)$.

 $\vec{n_1} \cdot \vec{n_3} = \dots = 0$ et $\vec{n_2} \cdot \vec{n_3} = \dots = 0$ donc \mathscr{Q} est perpendiculaire à \mathscr{P} et \mathscr{P} .