T spé FONCTION LOGARITHME NEPERIEN

« Exponentielle et logarithme sont au restaurant. Qui paie l’addition ?
Exponentielle car logarithme népérien. »
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Rappels sur la fonction exp :

m”“— cours — p-284 tsm-1f-rap-fb tsm-If-rap-sf

7}- 8 exercices corrigés — p.285

I. Fonction réciproque de la fonction exp

D’apres le corollaire du théoréme des valeurs intermédiaires, pour tout réel a>0 ,
I’équation e*=¢ admet une unique solution réelle.

DEFINITIONS

* On appelle ce réel logarithme népérien de a et on le note In(a) .

Si aucune confusion n’est possible, on le note parfois Ina .

 On note In la fonction qui, a tout réel x>0 , associe le réel In(x) .

REMARQUE : on dit que les fonctions exp et In sont des fonctions réciproques.
Au sens de la composition de fonctions, on dit aussi parfois que In est ’inverse de exp, mais cela est confus

car ’inverse de exp est souvent compris comme .

exp /1\

PROPRIETES IMMEDIATES /
e Inl= * Ine= ,/
v
> VXEIR ln(ex): . VXE]O,'FCD[ . eln(x):
Démonstrations :
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PROPRIETE

Dans le plan muni d’un repére orthonormé, les courbes représentatives des fonctions exp et In sont
symétriques par rapport a la droite d’équation y=x.

Démonstration : onnote C_ et C, les courbes représentatives de exp et In.

p y =X
On note (d) la droite d’équation y=x.
G
0 1
cIn
II. Propriétés algébriques
THEOREME (RELATION FONCTIONNELLE)
Pour tous réels x et y strictement positifs : In(xy)=
Démonstration

T s ]

i — A RETENIR « ‘

. La fonction In transforme les en ‘

REMARQUE : par récurrence, on pourrait alors démontrer que

VnelN,V (x;x;x5;...5%,) € (R))", ln(H xk):

PROPRIETES

Pour tous réels x et y strictement positifs et pour tout entier relatif # :

ol ol

« InvVx= * In(x")=

Démonstrations :
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. — pour n € IN : par récurrence sur n
— pour n € Z\IN : on pose n=—m et alors

In(x")=In(x™")=

ExempLeEs C1 A C3

1. Exprimer en fonction de In(2) chacun des nombres réels suivants.
a) In(64) b) m(é)
2. Simplifier « au maximum » In(v108) .

ExeMmprLEs A1l A A4

1. Exprimer en fonction de In(

(2)
a) In(4) b) ln(
(2)
(V72

Fs p. 289 SF2
chacun des nombres réels suivants. -

1
2
et de In(3) chacun des nombres réels suivants.

2)

REMARQUES : puisque In(x")=nln(x) pour x>0 etn un entier relatif, ona x"=e
On peut donc étendre ces propriétés aux réels en définissant une puissance non entiere :

2. Exprimer en fonction de In(2
a) In(24) b) In

nln(x) )

DEFINITION Pour tout réel x>0 , pour tout réel y : x’=¢’ ™|

FNIEN]

Ainsi, on peut donner du sens a 3'>, 8% ou 5

3%= 8"= 5

ENEN]

Pour tout réel a>0, on appelle fonction exponentielle de base a, notée exp,, la fonction définie sur IR par

exp,(x)=a" (ainsi, exp=exp, ). Démontrons que pour tout réel @ >0 et tous réels x ety : ¢’ =a"a”

On peut d’ailleurs démontrer que :

» les fonctions solutions de I’équation fonctionnelle f(x y)=f(x)+ f(») qui sont définies et dérivables
sur ]0;+00[ sont les fonctions de la forme f(x)=kIn(x) ou k € R (ce qui permet de définir les loga-
rithmes « de base a », notamment la fonction log, le logarithme décimal trés utilisé en sciences).
Ces fonctions sont méme les seules solutions continues !

— Voir 'approfondissement « Equation fonctionnelle des logarithmes ».

= les fonctions solutions non nulles de I’équation fonctionnelle f (x+y)=f(x) f(») qui sont définies et
dérivables sur R sont les fonctions exp, ou a € R.

Ces fonctions sont méme les seules solutions continues !

— Voir I'approfondissement « Equation fonctionnelle des exponentielles ».

Si a est un réel négatif, peut-on quand méme donner un sens a a* ? Par exemple & (—3)"? ?

Oui ! En effet, votre calculatrice vous donnera un message d’erreur ou, si le mode « complexe » est activé,
un nombre complexe (enseigné en T* option « mathématiques expertes »).

T'® spé maths - FLN - www.mathemathieu.fr - Johan Mathieu Page 3 sur 8



https://www.mathemathieu.fr/

II1. Etude de la fonction In

I11.1 Dérivee et variations

PROPRIETE

La fonction In est dérivable sur son ensemble de définition et In'(x)=

Démonstration :

, . g, * . . .
— La dérivabilité de In sur IR, est admise en Terminale, mais :

* la courbe C,, étant la symétrique de C.,, avec exp qui est dérivable sur R et a valeurs
dans IRi , il est intuitif que C,, est également dérivable sur IRi ;

* la démonstration est tout a fait possible !

— Voir I’approfondissement « Dérivabilité de la fonction In » pour une démonstration qui consiste a
démontrer que In est dérivable en 1 puis a en déduire qu’elle est dérivable sur R’ .

n=>+o n

. 1Y
— Voici une démonstration qui suppose connu' que lim (1"'—) =e .
Soit x € R} . Soit & € R" tel que x+h>0 .

. In(x+h)-1 1
On cherche a démontrer que lim n(x+h)=In(x)

80 h x
m(x+h)—hwx):1_n xth|_ [ x+h 3
h h X
X h_1  1_n
On pose n= . Alors T TS

e (=2 ol P P

1 n
Or, lim n=+% donc lim ln(<x+h)”) = lim —lln((1+l) ) .
h=0 h=0 X ns+oo X n

Or, lim (1+;) =¢ donc, par composition et produit de limites :
n->+wo

Iim lln((l+—1) ):l
nstoo X n X

— En admettant que In est dérivable :

onpose [ (x)=e™" pour tout x>0 .

Alors f'(x)=In"(x)Xexp'(In(x))=In"(x)Xx
mais aussi : f (x)=x donc f'(x)=1

d’ou le résultat.

PROPRIETE

La fonction In est strictement croissante sur R, .

Démonstration :

1 Pour une démonstration de cette limite, voir I’approfondissement « e et la capitalisation continue (1) » ou « e et la capitalisation continue (2) »
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COROLLAIRES (IMMEDIATS)
e lInx<0 & e Inx>0

e lna=lhbd o e lna<lnb &

ExemprLEs C4 A C6

1. Résoudre dans R 1’équation 41In(—2 x+7)=3.
2. Résoudre dans R I’inéquation In (3 x+2)<—4.

3. Déterminer le plus petit entier naturel » tel que 0,9"<0,01.

ExemMpPLE AS "
FF: p. 291 SF3

a) Déterminer I’ensemble € des nombres réels x pour lesquels 1’équation In(3x+1)=1
est définie.
b) Résoudre dans IR cette équation.

ExeMPLES A6 A A9

tsm-fln-exa6789-cor

Résoudre les équations et inéquations suivantes.
a) In(x)=5 b) =3 ¢ In(1-x)<—1 d) e*°>4.

ExempLEs A10 T All

tsm-fln-exal011-cor

1. Résoudre I’équation In(4x—1)=In(2—x) .
2. Résoudre I’inéquation In(x*+2x—3)>In(2).

ExemMpLE A12

tsm-fln-exal2-cor

Résoudre I’inéquation (%) <10~ ouneN.

II1.2 Limites aux bornes

PROPRIETES
. lim In(x)=+00 e lim In(x)=—o0
x>+ x>0
x>0
Démonstrations :

+ Soit A>0.Soit x>0 : In(x)>A o x>e*.

Donc, pour tout réel A>0, JA;+x[ contient tous les réels In(x) dés que x est assez grand
d’ou lim ln(x):+oo .

X+

* En 0, on peut faire comme ci-dessus, ou :

ExempLeE C7 tsm-fln-exc7-cor

. . ) .. . . In(x-2
Déterminer, si elle existe, la limite suivante : lim L .
x—+00 ln ( x+ 3)
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ExemMpLE A13

On considére la fonction fdéfinie sur 0;+o[ par f(x)=In(x)+x—3.

F3
¥ p.291 SF4

On admet que f'est dérivable sur ]0;+co[ . Dresser le tableau de variations de f.

I11.3 Convexite

PROPRIETE

La fonction In est concave sur son ensemble de définition.

Démonstration :

REMARQUE : on peut en déduire que la courbe représentative de In est toujours en dessous de ses

. . . . r . r x
tangentes, et obtenir ainsi de nombreuses inégalités, comme In(x)<x—1 ou In(x )<€ .

IV. Limites usuelles

PROPRIETES (CROISSANCES COMPAREES)

.1 . .. In(x

 lim M=0 et YV nelN, lim L=0
X+ X xd+00 X

. lim xIn(x)=0 ot V ne N, lim x"In(x)=0
x>0 x>0
x>0 x>0

Démonstrations :

R 1im In(x)=+o et lim KXZO
X3+ X3+0 €
In(x)

i, i . . In(x
donc, par composition de limites : lim W_O ie lim Infx)

X >+ X

:0.

— pour une autre démonstration qui utilise le théoréme des gendarmes,
voir I’approfondissement « Croissance comparée de In(x) et x ».
. ln(x) . i
Pour lim ——==0  raisonner par récurrence sur 7.
X

X >+

. n _ . r
Pour lim x In(x)=0 | rajsonner par récurrence sur 7.
X

x>0
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PROPRIETE

lim 1n(1+h):

10 h

Démonstration :

— pour une démonstration qui n’utilise pas la dérivabilité de In ,

voir I’approfondissement « Dérivabilité de la fonction In ».

ExemprLE Al4
Etudier la limite : a) en + oo de £ définie sur J0;+ o[ par f (x)=In(x)-2x .

F3
¥ p.293SFs

e In(x+1)
b) en 0 de la g définie sur |—1;0[U]0;+ox] par g(X):T

¢) en 0 et en + o de /4 définie sur ]0;+oo[ par A (x)=4x—xIn(x) .
d) en — oo de k définie sur IR par & (x)=x—In(x*+1).

V. Dérivée d’une fonction composée avec In

PROPRIETE

Soit u une fonction dérivable et strictement positive sur un intervalle 1.

!

Alors la fonction composée Inu est dérivable sur I et sa dérivée est : (Inu)'=2.
u

Démonstration : ¢’est la dérivée d’une fonction composée :

ExempLE C8

Soit f'1a fonction définie sur [1;+o[ par f(x)=In(5x*-2) .
Démontrer que fest dérivable sur [1;+o[, et déterminer sa fonction dérivée f'.

- BILAN DU CHAPITRE & TRAVAIL EN AUTONOMIE -

* Fiche bilan — p.296
* QCM 14 questions corrigées — p.297

* Exercices corrigés — 42 a 53 p.298

* Exercice type Bac guidé & corrigé — 132 p.310

* QCM 7 questions corrigées — tsm-fin-mgem

* Deux exercices types corrigés — tsm-fin-metl €t tsm-fin-met2

» Méthodes et exercices corrigés en vidéo :
— maths-et-tiques : tsm-fin-ym
—>jaic0mpris.com . tsm-fln-jaicompris
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HISTOIRE DES MATHEMATIQUES : APPELLATION, NOTATION, ETC.

— En 1797, dans son Tome 1 du Traité du calcul différentiel et du calcul intégral, le mathématicien frangais
Sylvestre-Frangois Lacroix (1765 — 1843) écrit” :

24. Pour que | 4 soit détermiing, il faue faire une hypothise sur . \ . . . 5 .
L ¢; la plus simple sans doute est de prendre | e =1, auquel cas Ora contrairement a ce que dit LaCI'OlX, Napler n'avait pas
on tombe sir une espdee particulidre de logarithmes , qub* sont pré- du tout établi de tels logarlthmes. Mais il semble bien que
cisément ceux que Neper a considérés, On les a nommés depuis /o= Ik doi 3 L ix I’ llati l ith , ..
garithmes kyperbolijues, parce qu'on peut les déduire de la quadrature on dorve a Lacroix appe ation ogar ithme nep erien, €n
des csgnccs compris entre lhyperbole équilacére e sul's asymprotes; im.xlis hommage au mathématicien écossais John Napier
ccrte dénomination cst viciense, car on peut éxzlement tiver de la . ., .
quadrature de I'hyperbole en géndral, tous lus systémes de logarithmes, (1 550 - 161 7)5 dont le nom est francisé en Neper: qui pu-
11 sercic done plus convenable d'appliquer aux premivrs le nom de blia les premiéres tables logarithmiques en 1614.
Pinvenceur, et de consacrer ainsi la mémoire de celui qui a rendu
un aussi grand service aux- Mathématiques :on pourroi les appoll
Jouarichmes de Néper, ou logarichmes Néperiens.

— Généralement, I’origine des logarithmes népériens est datée en 1647 : Grégoire de Saint-Vincent
(1584 — 1667) travaille sur la quadrature de I’hyperbole et démontre que la fonction obtenue vérifie la pro-
priété d’additivité des fonctions logarithmes. Cependant, il ne fait pas le lien avec les logarithmes de Na-
pier. C’est son disciple Alphonse Antoine de Sarasa (1617 — 1667) qui le fera en 1649. Ainsi, le logarithme
népérien s’est tout d’abord appelé logarithme hyperbolique, en référence a ’aire sous I’hyperbole qu’il
représente.

En 1748, dans son Introductio in analysin infinitorum, le mathématicien suisse Leonhard Euler
(1707 — 1783) parle également de logarithme naturel :

122. Comme on peut prendre a"volonté la bafe a pour
¢tablir un {yftéme de logarithmes, nous pourrens la prendre
telle, que k devienne = 1. Suppofons donc k=1;1la {érie

: : I 1 I
trouvée ci-deflus (arz. 116) deviendraa =1+~ — - — ;
I

On lit souvent que 1’appellation logarithme naturel appa-
rait pour la premiére fois en 1668 dans Logarithmotechnia’®

4 - &c,dont les termes convertisen décimales, & ajou-

. 4 : [RRETENY
de Nicolaus Mercator” (1620 — 1687). Or, en lisant 'ou- | 322 poura cette valeur 2,71828 182845 904523536028,
vrage (en latin), je n’ai vu aucune mention de ce terme... done le dernier chiffie et encore exalt. Les logarithmes

calculés fur cetre bafe, sappellent Logarithmes narurels ou
hyperboliques , parce qu’ils peuvent reprefenter la quadrature
d)e/ Phyperbole. Au refte, pour abréger nous défignerons
conftamment ce nombre 2,718281828459 &c. par la lettre e,
qui indiquera par conféquent la bafe des logarithmes naturels
ou hyperboliques, 2 laquelle répond la valeur de & =13
Ceft-a-dire, que cette lettre e exprimera la fomme de la

k 1 , T 1 CON SRR T .
, ks b —— e ——— = &c. continuée i I'infini,
férie 1 -+ rna 1.%.3 1.2.3. 4

— Cette fonction fut notée 1. ou 1, des le début du XVIII® siecle, et jusque dans la premicre moiti¢ du XIX®
siecle, puis log. ou log dés la fin du XVIII® sieécle, puis Log pour la différencier de la fonction log
(logarithme de base quelconque, ou plus particulierement logarithme décimal), ou encore logh (pour
« logarithme hyperbolique »), avant que ne tente de s’imposer la notation préconisée par la norme AFNOR
de 1961 : la notation In. Avec un succes cependant trés relatif : la notation log est encore aujourd’hui
utilisée dans plusieurs branches des mathématiques (notamment en théorie des nombres), ainsi que dans
plusieurs langages de programmation*.

* par exemple dans Python ou, avec le module math, log(x) renvoie le logarithme népérien de x.

2 Lire en ligne (pages 36/37) : gallica.bnf.fr/ark:/12148/bpt6k92729z/f71.double.mini.
3 Lire en ligne : books.google.fr/books?id=7iMVAAAAQAA]J.
4 Aussi connu sous son nom allemand Niklaus Kauffman.
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