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I. I. Fonction réciproque de la fonction expFonction réciproque de la fonction exp
D’après le corollaire du théorème des valeurs intermédiaires, pour tout réel a>0 , 
l’équation ex=a  admet une unique solution réelle.

DÉFINITIONSDÉFINITIONS

• On appelle ce réel logarithme népérien de a et on le note ln(a) .

Si aucune confusion n’est possible, on le note parfois ln a .

• On note ln  la fonction qui, à tout réel x>0 , associe le réel ln( x) .

→→                          À  À              R E T E N I RR E T E N I R                          ←←    

∀ x ∈     , ∀ a ∈             : ex=a                        ⇔

RR E M A R Q U EE M A R Q U E             : on dit que les fonctions exp et ln sont des fonctions réciproques.
Au sens de la composition de fonctions, on dit aussi parfois que ln est l’inverse de exp, mais cela est confus 

car l’inverse de exp est souvent compris comme 1
exp

.

PROPRIÉTÉS PROPRIÉTÉS IMMÉDIATESIMMÉDIATES

• ln 1= • ln e=

•  ∀ x ∈ ℝ : ln(ex)= •  ∀ x ∈ ]0 ;+∞[  : e ln(x )=

Démonstrations :
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PROPRIÉTÉPROPRIÉTÉ

Dans le plan muni d’un repère orthonormé, les courbes représentatives des fonctions exp et ln sont 
symétriques par rapport à la droite d’équation y=x.

Démonstration : on note Cexp  et Cln  les courbes représentatives de exp et ln.

On note (d) la droite d’équation y=x.

II. II. Propriétés algébriquesPropriétés algébriques

THÉORÈME (RELATION FONCTIONNELLE)THÉORÈME (RELATION FONCTIONNELLE)

Pour tous réels x et y strictement positifs : ln( x y )= .

Démonstration :

→→                          À  À              R E T E N I RR E T E N I R                          ←←    

La fonction ln transforme les p r o d     u i  t s  en s o m      m e s .

RR E M A R Q U EE M A R Q U E             : par récurrence, on pourrait alors démontrer que

∀ n ∈ ℕ*, ∀ (x1; x2; x3;… ; xn) ∈ (ℝ+
* )n , ln(∏

k=1

n

xk)=                    

PROPRIÉTÉSPROPRIÉTÉS

Pour tous réels x et y strictement positifs et pour tout entier relatif n :

• ln(1
x)= • ln( x

y )=
• ln √ x= • ln( xn)=

Démonstrations :

• 

• 
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• 

• → pour n ∈ ℕ : par récurrence sur n

→ pour n ∈ ℤ ℕ\  : on pose n=−m  et alors

ln ( xn)=ln ( x−m)=

EE X E M P L E SX E M P L E S  C C            1  1  ÀÀ  C 3 C 3    

1. Exprimer en fonction de ln(2) chacun des nombres réels suivants.

a) ln(64) b) ln(1
8)

2. Simplifier « au maximum » ln (√108) .

EE X E M P L E SX E M P L E S               A 1  A 1  ÀÀ  A 4 A 4    

1. Exprimer en fonction de ln(2) chacun des nombres réels suivants.

a) ln(4) b) ln(1
2)

2. Exprimer en fonction de ln(2) et de ln(3) chacun des nombres réels suivants.
a) ln(24) b) ln(√72)

RR E M A R Q U E SE M A R Q U E S             : puisque ln( xn)=n ln ( x)  pour x>0  et n un entier relatif, on a xn=en ln (x) .
On peut donc étendre ces propriétés aux réels en définissant une puissance non entière :

DÉFINITIONDÉFINITION Pour tout réel x>0 , pour tout réel y : x y=ey ln( x ) .

Ainsi, on peut donner du sens à 3√2 , 8π  ou 5
7
4  :

3√2= 8π= 5
7
4=

Pour tout réel a>0 , on appelle fonction exponentielle de base a, notée expa , la fonction définie sur ℝ par 

expa(x )=a x  (ainsi, exp=expe ). Démontrons que pour tout réel a>0 et tous réels x et y  : a x+ y=ax a y :

On peut d’ailleurs démontrer que :

▪ les fonctions solutions de l’équation fonctionnelle f (x y)= f ( x)+ f ( y ) qui sont définies et dérivables 
sur  ]0 ;+∞[ sont les fonctions de la forme f (x )=k ln( x) où k ∈ ℝ (ce qui permet de définir les loga-
rithmes « de base a », notamment la fonction log, le logarithme décimal très utilisé en sciences).

Ces fonctions sont même les seules solutions continues !

→ Voir l’approfondissement « Équation fonctionnelle des logarithmes ».

▪ les fonctions solutions non nulles de l’équation fonctionnelle f (x+ y)= f (x) f ( y)  qui sont définies et 
dérivables sur ℝ sont les fonctions expa où a ∈ ℝ.

Ces fonctions sont même les seules solutions continues !

→ Voir l’approfondissement « Équation fonctionnelle des exponentielles ».

Si a est un réel négatif, peut-on quand même donner un sens à a x ? Par exemple à (−3)√2  ?
Oui ! En effet, votre calculatrice vous donnera un message d’erreur ou, si le mode « complexe » est activé, 
un nombre complexe (enseigné en Tle option « mathématiques expertes »).
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III. Étude de la fonction lnIII. Étude de la fonction ln

III.1 Dérivée et variationsIII.1 Dérivée et variations

PROPRIÉTÉPROPRIÉTÉ

La fonction ln  est dérivable sur son ensemble de définition et ln ' (x )= .

Démonstration :

→ La dérivabilité de ln  sur ℝ+
*  est admise en Terminale, mais :

• la courbe  Cln étant la symétrique de  Cexp avec  exp qui est dérivable sur  ℝ et à valeurs 
dans ℝ+

* , il est intuitif que Cln  est également dérivable sur ℝ+
*  ;

• la démonstration est tout à fait possible !

→  Voir  l’approfondissement  « Dérivabilité  de  la  fonction  ln »  pour  une  démonstration  qui  consiste  à 
démontrer que ln est dérivable en 1 puis à en déduire qu’elle est dérivable sur ℝ+

* .

→ Voici une démonstration qui suppose connu1 que lim
n→+∞(1+ 1

n)
n

=e  :

Soit x ∈ ℝ+
* . Soit h ∈ ℝ* tel que x+h>0 .

On cherche à démontrer que lim
h→0

ln ( x+h)−ln ( x )
h

= 1
x

.

ln ( x+h)−ln ( x)
h

=1
h

ln( x+h
x )=ln(( x+h

x )
1
h)

On pose n= x
h . Alors 

h
x
= 1

n  et 
1
h
= n

x

donc ln(( x+h
x )

1
h)=ln((1+ 1

n)
n
x)=ln(((1+ 1

n)
n)

1
x)= 1

x
ln((1+ 1

n)
n) .

Or, lim
h→0

n=+∞  donc lim
h→0

ln(( x+h
x )

1
h) = lim

n→+∞

1
x

ln((1+ 1
n)

n) .

Or, lim
n→+∞(1+ 1

n)
n

=e  donc, par composition et produit de limites :

lim
n→+∞

1
x

ln((1+ 1
n)

n)= 1
x .

→ En admettant que ln est dérivable :

on pose f (x )=e ln( x)  pour tout x>0 .

Alors f ' ( x)= ln ' ( x)×exp ' (ln ( x))=ln ' (x )×x

mais aussi : f (x )=x  donc f ' ( x)=1

d’où le résultat.

PROPRIÉTÉPROPRIÉTÉ

La fonction ln  est strictement croissante sur ℝ+
* .

Démonstration : 

1 Pour une démonstration de cette limite, voir l’approfondissement « e et la capitalisation continue (1) » ou « e et la capitalisation continue (2) ».
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COROLLAIRESCOROLLAIRES  (IMMÉDIATS) (IMMÉDIATS)

• • ln x<0   ⇔ ⇔ • • ln x>0   ⇔ ⇔ 

• • ln a=ln b   ⇔ ⇔ • • ln a<ln b   ⇔ ⇔ 

EE X E M P L E SX E M P L E S  C 4 C 4              ÀÀ  C 6 C 6    

1. Résoudre dans ℝ l’équation 4 ln(−2 x+7)=3.
2. Résoudre dans ℝ l’inéquation ln(3 x+2)<−4.

3. Déterminer le plus petit entier naturel n tel que 0,9n<0,01.

EE X E M P L EX E M P L E               A 5A 5    

a) Déterminer l’ensemble E des nombres réels x pour lesquels l’équation ln(3 x+1)=1
est définie.
b) Résoudre dans ℝ cette équation.

EE X E M P L E SX E M P L E S               A 6  A 6  ÀÀ  A 9 A 9    

Résoudre les équations et inéquations suivantes.
a) ln( x)=5      b) ex=3      c) ln(1−x)⩽−1      d) e2x−3>4 .

EE X E M P L E SX E M P L E S               A 1 0  A 1 0  E TE T  A 1 1 A 1 1    

1. Résoudre l’équation ln(4 x−1)=ln(2− x) .
2. Résoudre l’inéquation ln( x2+2 x−3)⩾ln (2) .

EE X E M P L EX E M P L E               A 1 2A 1 2    

Résoudre l’inéquation (2
5)

n

<10−3
 où n ∈ ℕ.

III.2 Limites aux bornesIII.2 Limites aux bornes

PROPRIÉTÉSPROPRIÉTÉS

• lim
x→+∞

ln (x)=+∞ • lim
x→0
x>0

ln(x )=−∞

Démonstrations :

• Soit A>0 . Soit x>0  : ln ( x )>A   ⇔ x>eA .

Donc, pour tout réel A>0 , ]A;+∞[  contient tous les réels ln( x)  dès que x est assez grand

d’où lim
x→+∞

ln ( x)=+∞ .

• En 0, on peut faire comme ci-dessus, ou :

EE X E M P L EX E M P L E  C 7 C 7    

Déterminer, si elle existe, la limite suivante : lim
x→+∞

ln(x−2)
ln ( x+3)

.
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EE X E M P L EX E M P L E               A 1 3A 1 3    

On considère la fonction f définie sur ]0;+∞[  par f (x )=ln ( x)+x−3 .
On admet que f est dérivable sur ]0;+∞[ . Dresser le tableau de variations de f.

III.3 ConvexitéIII.3 Convexité

PROPRIÉTÉPROPRIÉTÉ

La fonction ln  est concave sur son ensemble de définition.

Démonstration :

RR E M A R Q U EE M A R Q U E             :  on peut  en déduire  que la  courbe représentative  de  ln  est  toujours  en dessous de  ses 

tangentes, et obtenir ainsi de nombreuses inégalités, comme ln( x)⩽ x−1  ou ln( x)⩽ x
e

.

IIVV. . Limites usuellesLimites usuelles

PROPRIÉTÉS (CROISSANCES COMPARÉES)PROPRIÉTÉS (CROISSANCES COMPARÉES)

• lim
x→+∞

ln( x)
x

=0 et ∀ n ∈ ℕ*, lim
x→+∞

ln( x)
x n =0

• lim
x→ 0
x>0

x ln (x)=0 et ∀ n ∈ ℕ*, lim
x→0
x>0

xn ln (x )=0

Démonstrations :

• lim
x→+∞

ln ( x)=+∞  et lim
X→+∞

X
eX

=0

donc, par composition de limites : lim
x→+∞

ln(x)
e ln (x) =0  ie lim

x →+∞

ln(x)
x

=0 .

→ pour une autre démonstration qui utilise le théorème des gendarmes,

voir l’approfondissement « Croissance comparée de ln(x) et x ».

Pour lim
x→+∞

ln(x)
xn =0 , raisonner par récurrence sur n.

• 

Pour lim
x→0
x>0

xnln (x)=0 , raisonner par récurrence sur n.

→→              U T I L EU T I L E   ÀÀ   R E T E N I RR E T E N I R                          ←←    

La fonction puissance « l’emporte » sur ln en 0 et + ∞.
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PROPRIÉTÉPROPRIÉTÉ

lim
h→ 0

ln (1+h)
h

=1

Démonstration : 

→ pour une démonstration qui n’utilise pas la dérivabilité de ln ,

voir l’approfondissement « Dérivabilité de la fonction ln ».

EE X E M P L EX E M P L E  A 1 A 1            44    

Étudier la limite : a) en + ∞ de f définie sur ]0;+∞[ par f (x )=ln ( x)−2 x .

b) en 0 de la g définie sur ]−1;0 [∪]0;+∞[ par g ( x)=
ln ( x+1)

x 3 .

c) en 0 et en + ∞ de h définie sur ]0;+∞[ par h (x)=4 x−x ln ( x) .
d) en – ∞ de k définie sur ℝ par k ( x )= x−ln ( x2+1) .

V. V. Dérivée d’une fonction composée avec lnDérivée d’une fonction composée avec ln

PROPRIÉTÉPROPRIÉTÉ

Soit u  une fonction dérivable et strictement positive sur un intervalle I.

Alors la fonction composée ln u  est dérivable sur I et sa dérivée est : (ln u) '=u '
u

.

Démonstration : c’est la dérivée d’une fonction composée :                                                            .

EE X E M P L EX E M P L E  C 8 C 8    

Soit f la fonction définie sur [1;+∞[  par f (x )=ln (5 x4−2) .
Démontrer que f est dérivable sur [1;+∞[ , et déterminer sa fonction dérivée f ' .

→  B I L A N  D U  C H A P I T R E  &  T R A V A I L  E N  A U T O N O M I E   ←

• Fiche bilan → p.296

• QCM 14 questions corrigées → p.297

• Exercices corrigés → 42 à 53 p.298

• Exercice type Bac guidé & corrigé → 132 p.310

• QCM 7 questions corrigées → tsm-fln-mqcm

• Deux exercices types corrigés → tsm-fln-met1 et tsm-fln-met2

• Méthodes et exercices corrigés en vidéo :
→ maths-et-tiques : tsm-fln-ym

→ jaicompris.com : tsm-fln-jaicompris

Tle spé maths – FLN – www.mathemathieu.fr – Johan Mathieu Page 7 sur 8

p. 293 SF5

https://www.mathemathieu.fr/
https://www.mathemathieu.fr/tsm-fln-jaicompris
https://www.mathemathieu.fr/tsm-fln-ym


H I S T O I R E  D E S  M A T H É M A T I Q U E SH I S T O I R E  D E S  M A T H É M A T I Q U E S    :  A P P E L L A T I O N ,  N O T A T I O N ,  E T C .:  A P P E L L A T I O N ,  N O T A T I O N ,  E T C .

→ En 1797, dans son Tome 1 du Traité du calcul différentiel et du calcul intégral, le mathématicien français 
Sylvestre-François LacroixSylvestre-François Lacroix (1765 – 1843) écrit2 :

Or, contrairement à ce que dit Lacroix, Napier n’avait pas 
du tout établi de tels logarithmes. Mais il semble bien que 
l’on doive à Lacroix l’appellation logarithme népérien, en 
hommage  au  mathématicien  écossais  John  NapierJohn  Napier  
(1550 – 1617), dont le nom est francisé en Neper, qui pu-
blia les premières tables logarithmiques en 1614.

→  Généralement,  l’origine  des  logarithmes  népériens est  datée  en  1647 :  Grégoire  de  Saint-VincentGrégoire  de  Saint-Vincent  
(1584 – 1667) travaille sur la quadrature de l’hyperbole et démontre que la fonction obtenue vérifie la pro-
priété d’additivité des fonctions logarithmes. Cependant, il ne fait pas le lien avec les logarithmes de Na-
pier. C’est son disciple Alphonse Antoine de SarasaAlphonse Antoine de Sarasa (1617 – 1667) qui le fera en 1649. Ainsi, le logarithme 
népérien s’est tout d’abord appelé  logarithme hyperbolique, en référence à l’aire sous l’hyperbole qu’il 
représente.
En  1748,  dans  son  Introductio  in  analysin  infinitorum,  le  mathématicien  suisse  Leonhard  EulerLeonhard  Euler  
(1707 – 1783) parle également de logarithme naturel :

On lit souvent que l’appellation  logarithme naturel appa-
raît pour la première fois en 1668 dans Logarithmotechnia3 
de Nicolaus Mercator4 (1620 – 1687).  Or,  en lisant  l’ou-
vrage (en latin), je n’ai vu aucune mention de ce terme…

→ Cette fonction fut notée l. ou l, dès le début du XVIIIe siècle, et jusque dans la première moitié du XIXe 

siècle,  puis  log. ou  log dès  la  fin  du  XVIIIe siècle,  puis  Log pour  la  différencier  de  la  fonction  log 
(logarithme  de  base  quelconque,  ou  plus  particulièrement  logarithme  décimal),  ou  encore  logh (pour 
« logarithme hyperbolique »), avant que ne tente de s’imposer la notation préconisée par la norme AFNOR 
de 1961 : la notation  ln.  Avec  un succès cependant très relatif :  la notation  log est  encore aujourd’hui 
utilisée dans plusieurs branches des mathématiques (notamment en théorie des nombres), ainsi que dans 
plusieurs langages de programmation*.

* par exemple dans Python où, avec le module math, log(x) renvoie le logarithme népérien de x.

2 Lire en ligne (pages 36/37) : gallica.bnf.fr/ark:/12148/bpt6k92729z/f71.double.mini.

3 Lire en ligne : books.google.fr/books?id=7jMVAAAAQAAJ.

4 Aussi connu sous son nom allemand Niklaus Kauffman.
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