Nom:	Prénom :

RENDRE LE SUJET AVEC VOTRE COPIE

MATHÉMATIQUES: DEVOIR SURVEILLÉ 3

MERCREDI 20 FÉVRIER 2019

Durée de l'épreuve : 1 h 50. Calculatrice autorisée.

Un temps indicatif est annoncé pour chaque exercice. Si vous le suivez, il vous restera alors 10 min.

EXERCICE 1 (5,5 points)

env. 30 min

Soit z_1 et z_2 les deux nombres complexes suivants : $z_1 = 1 - i$ et $z_2 = -8 - 8\sqrt{3}i$.

On pose $Z = \frac{z_1}{z_2}$.

T°S

- 1. Déterminer, en détaillant les calculs et en simplifiant le résultat, la forme algébrique de Z.
- **2.** Écrire z_1 et z_2 sous forme exponentielle.
- 3. Écrire Z sous forme exponentielle puis sous forme trigonométrique.
- **4.** En déduire que : $\cos\left(\frac{5\pi}{12}\right) = \frac{\sqrt{6} \sqrt{2}}{4}$.
- 5. On admet que : $\sin\left(\frac{5\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$

• pour tous réels a et b: $\cos a \cos b - \sin a \sin b = \cos (a+b)$.

Résoudre l'équation suivante dans l'ensemble des réels $\mathbb R$:

$$(\sqrt{6}-\sqrt{2})\cos x - (\sqrt{6}+\sqrt{2})\sin x = -2\sqrt{3}$$
.

EXERCICE 2 (11,5 points)

env. 55 min

Partie A

Soit g la fonction définie et dérivable sur \mathbb{R} telle que, pour tout réel $x: g(x) = -2x^3 + x^2 - 1$.

- **1. a)** Étudier les variations de la fonction *g*.
- **b)** Déterminer les limites de la fonction g en $-\infty$ et en $+\infty$.
- **2. a)** Démontrer que l'équation g(x)=0 admet une unique solution dans \mathbb{R} , notée α , et que α appartient à [-1;0].
- **b)** A l'aide de votre calculatrice, déterminer une valeur approchée de α à 10^{-3} près. *Expliquer rapidement votre démarche*.
- **3.** En déduire le signe de g(x) sur \mathbb{R} .

Partie B

Soit f la fonction définie et dérivable sur \mathbb{R} telle que, pour tout réel x : $f(x) = (1 + x + x^2 + x^3)e^{-2x+1}$

- 1. Démontrer que $\lim_{x \to -\infty} f(x) = -\infty$.
- **2. a)** Démontrer que pour tout réel x > 1 : $1 < x < x^2 < x^3$.
- **b)** En déduire que, pour tout réel x>1: $0 < f(x) < 4x^3 e^{-2x+1}$.
- c) On admet que, pour tout entier naturel $n : \lim_{x \to +\infty} x^n e^{-x} = 0$.

Vérifier que, pour tout réel x : $4 x^3 e^{-2x+1} = \frac{e}{2} (2 x)^3 e^{-2x}$.

En déduire que : $\lim_{x \to +\infty} 4x^3 e^{-2x+1} = 0$.

- d) On note C_f la courbe représentative de f dans un repère orthonormé $(O; \vec{i}, \vec{j})$. En utilisant la guestion précédente, déterminer la limite de f en $+\infty$ et en donner une interprétation graphique.
- **3.** Démontrer que, pour tout réel x : $f'(x) = (-2x^3 + x^2 1)e^{-2x+1}$
- **4.** À l'aide des résultats de la partie A, déterminer les variations de f sur \mathbb{R} .

EXERCICE 3 (3 points)

Pour chacune des trois questions, une ou plusieurs réponses sont exactes.

Cocher ci-dessous la ou les bonne(s) réponse(s). Aucune justification n'est demandée.

Il sera attribué 1 point si la réponse est exacte, 0 sinon, et -0,25 si la réponse est inexacte. La note finale sera ramenée sur 3 points.

- 1. On note (E) l'équation d'inconnue complexe $z : z^2 + 2az + a^2 + 1 = 0$, où a désigne un nombre réel.
 - \square Pour toute valeur de a, (E) n'a pas de solution dans \mathbb{C} .
 - \square Pour toute valeur de a, les solutions de (E) dans \mathbb{C} ne sont pas réelles et leurs modules sont distincts.
 - \square Pour toute valeur de a, les solutions de (E) dans \mathbb{C} ne sont pas réelles et leurs modules sont égaux.
 - \square Il existe une valeur de *a* pour laquelle (E) admet au moins une solution réelle.
- 2. Soit θ un nombre réel dans l'intervalle $[0;\pi[$ et z le nombre complexe : $z=1+e^{i\theta}$. Pour tout réel θ dans l'intervalle $[0;\pi[$:
 - \square Le nombre z est un réel positif.
 - \square Un argument de z est θ .
 - \square Le nombre z est égal à 1.
- \square Un argument de z est $\frac{\theta}{2}$.
- **3.** Une urne contient 5 boules bleues et 3 boules grises indiscernables au toucher.

On tire successivement, de manière indépendante, 5 boules avec remise dans cette urne.

On note alors X la variable aléatoire comptant le nombre de boules grises tirées.

On note E(X) l'espérance de X. On a alors :

- \square E(X)=3.
 - \square p(X \geqslant 1) \approx 0,905.
- $\square E(X) = \frac{3}{9}$. $\square p(X \ge 1) \approx 0.095$.