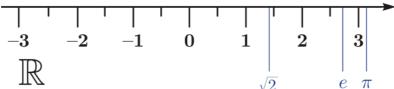
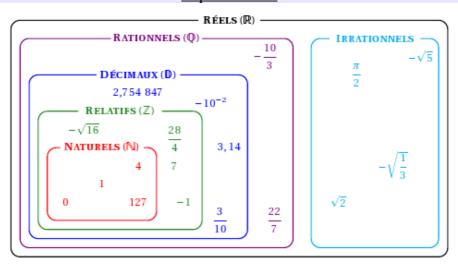
QU'EST-CE QU'UN INTERVALLE?

I. Quelques rappels sur les ensembles de nombres


Il a différents types de nombres :

Nom de l'ensemble de nombres / notation		Définition	Exemples
Entiers naturels	N	Ils servent à	0;1;2;3;1547; etc
Entiers relatifs	\mathbb{Z}	Nombres entiers et	-7; -1; 0; 10; 154; etc
Décimaux	D	Quotient d'un nombre entier relatif par	$-0.8 = \frac{-8}{10}$; $1.07 = \frac{107}{10^2}$; $\frac{-17}{10^8}$; etc
Rationnels	Q	Quotient d'un nombre entier relatif par	$\frac{1}{3}$; $\frac{1}{2}$; $\frac{-3}{4}$; $\frac{1574}{-12748}$;
Irrationnels		Nombre qui n'est pas rationnel	$\sqrt{2}$; π ; $\sqrt{5}$;
Réels	IR	Cet ensemble contient tous les autres	tous les exemples ci-dessus !


Remarque : L'ensemble IR est usuellement représenté par une droite graduée.

Chaque nombre réel est représenté par un point de la droite graduée, et tout point de cette droite représente

un réel.

Représentation

II. <u>Intervalles de nombres réels</u>

Soient a et b deux réels tels que a < b.

L'intervalle noté	est l'ensemble des réels x tels que	Représentation de cet intervalle sur une droite graduée
[a;b]	$a \leq x \leq b$	
]a;b[
]a;b]		
	<i>a</i> ≤ <i>x</i> < <i>b</i>	
[a;+∞[
] <i>a</i> ;+∞[
]-\infty; a[
	<i>x</i> ≤ <i>a</i>	

Remarque : le symbole ∞ se lit « infini », ce n'est pas un nombre !

Vocabulaire : • [a;b] est appelé l'intervalle fermé d'extrémités a et b

-]a;b[est appelé intervalle ouvert d'extrémités a et b
- [a;b[est appelé intervalle d'extrémités a et b, fermé en a et ouvert en b
- etc.

De la même façon on peut définir d'autres ensembles (pas nécessairement des intervalles !!!) :

Définitions : Soient I et J deux intervalles.

- L'ensemble des nombres appartenant à la fois à I et à J est appelé de I et J, et cet ensemble est noté :
- L'ensemble des nombres appartenant à I \underline{ou} (inclusif) à J est appelé de I et J, et cet ensemble est noté :
- Lorsque les intervalles I et J n'ont aucun nombre en commun, leur intersection est, ce que l'on note :

Exemples:

•
$$[1;7] \cup [-2;5[=$$

•
$$[1;7] \cap [-2;5] =$$

•
$$[1;7[\cup[-2;+\infty[=...]]$$

•
$$[1;7[\cap[-2;+\infty[=$$