TS-DM

LA LOI DE TITIUS-BODE [CORRECTION]

1. a)
$$r_2 = 2r_1 - 0.4 = 2 \times 0.7 - 0.4 = 1$$

b) Pour tout
$$n \in \mathbb{N}^*$$
: $u_{n+1} = r_{n+1} - 0.4$
= $2r_n - 0.4 - 0.4$
= $2(r_n - 0.4)$
= $2u_n$

Donc (u_n) est géométrique de raison 2 et de premier terme $u_1 = r_1 - 0.4 = 0.7 - 0.4 = 0.3$.

c) Pour tout
$$n \in \mathbb{N}^*$$
: $u_n = u_1 \times 2^{n-1}$ ie $u_n = 0.3 \times 2^{n-1}$.
Donc: $r_n = u_n + 0.4$
 $= 0.3 \times 2^{n-1} + 0.4$.

2. a) En effectuant les calculs des termes de (r_n) pour les rangs 1 à 8, on trouve :

n	1	2	3	4	5	6	7	8
r_n	0,7	1	1,6	2,8	5,2	10	19,6	38,8

b)

Planète	Vénus	Terre	Mars	Jupiter	Saturne
Erreur absolue	0,023	0	0,077	0,003	0,463
Erreur relative	0,032	0	0,051	0,001	0,049

Calculs des erreurs absolues : $|r_n-0.723|$. Calcul des erreurs relatives : $\frac{|r_n-0.723|}{r_n}$.

Hormis pour Saturne, les erreurs absolues sont proches de 0.

Les erreurs relatives sont toutes inférieures à 6 %, la loi de Titius-Bode a donc donné des résultats très proches de la réalité (rappelons que cette loi a été émise en 1772 !).

- c) L'objet céleste qui correspond au rang n=4 est Cérès (2,765 UA), qui est une planète naine.
- d) Neptune est la huitième planète du système solaire, et r_8 =38,8.

 $\frac{38,8-30,069}{30,069} \approx 0.29$ donc pour Neptune, la loi de Titius-Bode donne une erreur relative de 29 %, c'est beaucoup trop loin de la réalité...

Malgré la prédiction de son existence grâce à cette loi, le résultat fourni par cette loi est faux !

e)
$$\lim_{n \to -\infty} r_n = \lim_{n \to -\infty} (0.4 + 0.3 \times 2^{n-1})$$

 $= \lim_{n \to +\infty} (0.4 + 0.3 \times 2^{-n-1})$
 $= \lim_{n \to +\infty} (0.4 + 0.3 \times 2^{-(n+1)})$
 $= \lim_{n \to +\infty} \left(0.4 + 0.3 \times \left(\frac{1}{2}\right)^{n+1}\right)$
Or, $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^{n+1} = 0$ car $-1 < \frac{1}{2} < 1$. D'où: $\lim_{n \to -\infty} r_n = 0.4$.

Cela correspond bien à ce que les scientifiques de l'époque observaient pour Mercure, et à ce que l'on trouve sur Wikipedia pour orbite de Mercure : 0,38709893 UA.

Afin de rester cohérent, les astronomes de l'époque prenaient donc un rang de « $-\infty$ » pour Mercure ; ainsi, la loi de Titius-Bode restaient « pleine d'espoir »... pour un temps.