Nom:	Prénom :	Classe: TleSM
	-	

le 17 / 11 / 2020

Note:	/ 10
11010	, 10

INTERROGATION de MATHÉMATIQUES

Durée : 10 minutes. Calculatrice **NON AUTORISÉE**.

- /1 **1.** Compléter la phrase suivante : On dit que la courbe représentative d'une fonction f admet une asymptote horizontale en $+\infty$, d'équation y=l (l est un réel), lorsque
- /3 2. Compléter les définitions suivantes.

Notation	Définition (phrase)
$\lim_{x \to a} f(x) = +\infty \ (a \in \mathbb{R})$	
$\lim_{x \to -\infty} f(x) = l \ (l \in \mathbb{R})$	
$\lim_{x \to +\infty} f(x) = -\infty$	

/6 3. /!\ Une absence de réponse ou une mauvaise réponse enlève 1 point. Le total de cette question est sur 6 points. On considère deux fonctions f et g définies au voisinage de α , où α désigne un réel ou $+\infty$ ou $-\infty$.

$ \lim_{x \to \alpha} f(x) $	+ ∞	- ∞	<i>l</i> >0
$ \lim_{x\to\alpha}g(x) $	$-\infty$	$-\infty$	$-\infty$
$\lim_{x \to a} f(x) + g(x)$			

$ \lim_{x \to \alpha} f(x) $	$-\infty$	0	<i>l</i> <0	<i>l</i> >0	+ ∞
$ \lim_{x\to\alpha}g(x) $	$-\infty$	+ ∞	+ ∞	- ∞	- ∞
$ \lim_{x \to a} f(x) \times g(x) $					

$ \lim_{x \to \alpha} f(x) $	+ ∞	l	$-\infty$	$-\infty$	$-\infty$	0	$-\infty$	<i>l</i> >0
$\lim_{x\to\alpha}g(x)$	l'<0	$-\infty$	l'<0	l'>0	+ ∞	0	0^{-}	0+
$\lim_{x \to \alpha} \frac{f(x)}{g(x)}$								